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NICER at home on ISS
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NICER/SEXTANT — Overview

• PI: Keith Gendreau, NASA GSFC
• Science: Neutron star structure, dynamics, & 

energetics through soft X-ray timing spectroscopy
• Launched: June 3, 2017, SpaceX-11 resupply
• Platform: ISS external attached payload with active 

pointing
• Duration: 18 months baseline science mission; 

likely GO extension

• Instrument: 0.2–12 keV “concentrator” optics, 
silicon-drift detectors, GPS absolute time tagging 
and position

• Enhancements:
– Demonstration of pulsar-based navigation
– PI discretionary & ToO time

• Status:
– Commissioning complete 17 July, 2017
– Baseline science mission in progress
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• Science
o Why neutron stars?
o NICER’s objectives
o Focus on key science: modeling X-ray emissions
o Early NICER results
o Guest Observer plans

• The NICER payload
o Design and performance
o Launch and installation

• SEXTANT
o History
o Method and objectives

Outline
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Why neutron stars?
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Why neutron stars? (cont.)
An 80-year-old question mark
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Science objectives 
I — Neutron star structure

Radius and mass reveal interior composition

Objective Measurements
Structure — Uncover nature of 
matter within neutron stars

Neutron star radii, masses, & 
cooling timescales

Simulations show ±5% M-R contours 
with ~ 106 photons through modeling 
of gravitationally altered pulse 
lightcurves
Need just 3 objects (Psaltis & Ozel 
2009, Phys Rev D 80, 103003).
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Science objectives 
II — Neutron star dynamics

Spin, accretion, and “starquake” phenomena probe crustal 
physics and external interactions

Objective Measurements
Dynamics — Reveal physics of 
variability on many timescales

Rotational stability, outbursts, 
oscillations, and precession
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Science objectives 
III — Neutron star energetics

Sites & mechanisms of radiation reveal thermal, magnetic, 
nuclear, etc., energy stores

Objective Measurements
Energetics — Determine where 
energy is stored and extracted

Intrinsic radiation patterns, 
spectra, and luminosities

PSR J0034+0451
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Modeling surface emission 
to infer M-R 

Gravitational light-bending saves the day!

Weak Gravity
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9 km
12 km
16 km

for M = 1.4 M�}

a=10°,	z=30°

a=30°,	z=60°

a=60°,	z=80°

a=20°,	z=80°

Bogdanov, Rybicki, & Grindlay, ApJ, 670, 668 (2007) 

Inferring neutron star radii through 
lightcurve modeling — geometry
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• NICER is most sensitive where 
neutron stars are brightest: 
~106 K thermal emission peaks 
in soft X-rays

• Energy resolution enables 
phase-resolved spectroscopy

Inferring neutron star radii through 
lightcurve modeling — spectroscopy

• Absolute time resolution 
enables coherent light curve 
integration over years

PSR J0437–4715
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• Uncertainties in model

✓ GR calculations (approximations & numerical 

accuracy)

✓ Atmosphere model (depth of heating, hydrogen vs. 

helium, fully ionized?)

• Instrument calibration

✓ Method does not depend on absolute flux

determination

• X-ray background

✓ How accurately must the background be 

measured?

• Unknown or weakly constrained properties 

of neutron star

✓ Polar cap size/shape and heat distribution

✓ Non-thermal emission (pulsed or unplugged?)

– Magnetic inclination and viewing angle 

– Mass

Known unknowns…

Potential sources of systematics

Oblate Errors
Spherical Errors
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Lightcurve modeling sim results

PSR J0437-4715, sim. Texp = 1 Msec PSR J0030+0451, sim.Texp = 3 Msec

Possible first-
ever mass of 
isolated 
neutron star

ΔR/R = 4.0%
ΔR/R = 3.7% ΔM/M = 4.5%

±5% uncertainty in R achieved in 1.6 Msec±5% in R achieved in < 1 Msec

Mass known 
to ±5%
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At pulse peaks, thousands of photons in joint spectral and pulse-phase 
bins.

NICER lightcurves (cont.)

639 ksec

PSR J0437–4715 PSR J0030+0451

1,080 ksec
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NICER timing results
MSPs with exceptionally high timing precision
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Two recent Astronomer’s Telegrams
Re-detection of the accreting pulsar in Swift J1756.9–2508
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Two recent Astronomer’s Telegrams (cont.)

Discovery of the accreting pulsar in IGR J17379–3747
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Early NICER burst results (cont.)
619 Hz burst oscillations
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Early NICER burst results
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Short recurrence-time bursts
Just 13 min apart, too soon for the atmosphere to recover…
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Iron “reflection” in Serpens X-1
Inner edge of accretion disk is upper limit on NS radius

NICER (black), NuSTAR (red), XMM-Newton (blue/purple) 

Reflection lines are shaped by Doppler and 

relativistic effects due to the proximity to the 

neutron star. In a 4.5 ksec observation the best-fit 

reflection models suggest that the inner disk extends 

close to an inner radius of between 12.4 and 19.8 

km.
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NICER Observatory Science results
Black hole transient in outburst: MAXI J1535–571
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NICER Observatory Science results (cont.)

MAXI J1535’s marching QPOs
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Early black-hole binary results (cont.)
Energy dependence of low-frequency QPOs in MAXI J1535-571
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NICER Observatory Science results (cont.)

Two stellar flare ToOs triggered by MAXI: GT Mus and UX Ari

Constraints on elemental 
composition of flaring plasma, 
and stellar magnetic structure, 
on previously inaccessible 
timescales

MAXI has just been extended for another 3 years!
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Crab

GRS 1915+105

Ibaraki,
Japan

GTC,
Canary Islands

Two targets, two ground-based telescopes, three successive ISS orbits

Coordination across facilities and wavelengths
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Live ISS telemetry ~80% of the time
Cen X-3 pulsations in real time
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X-ray Timing Instrument (XTI) capabilities

• Spectral band: 0.2–12 keV

• Timing resolution: < 100 nsec RMS 

absolute

• Energy resolution: 140 eV @ 6 keV

• Non-imaging FOV: 6 arcmin diameter

• Background: < 0.5 cps

• Sensitivity, 5σ: 1 x 10–13 erg/s/cm2 

– 0.5–10 keV, 10 ksec (Crab-like)

– ~3x better than XMM-Newton’s 

timing capability (PN clocked)

• Max countrate: ~38,000 cps (3.5 Crab)

– Deadtime accounted for in 

telemetry

A novel combination of sensitivity, timing, and energy resolution
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The NICER Payload
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X-ray Concentrator optics
Single reflection, grazing-incidence nested gold-coated Al foils
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Detector plate

Pb collar

Pb disk

Radiation 
shielding

Au/Ag “traffic cone”
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NICER’s ready to go!
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Launch!

3 June 2017
Cape Canaveral, FL
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Transport and installation (cont.)
Dragon and NICER proceed to ISS transfer orbit
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Extraction from Dragon was delicate…

Transport and installation (cont.)
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Watch NICER collect your photons!
Occasional / on-demand live ISS video
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• 3 Jun 2017 — Launch
• 14 Jun 2017 — Activation
• 17 Jul 2017 — Beginning of Baseline Science ops
• Fall 2017 — Establishment of NICER GOF; PI discretionary time requests 

considered
• Feb 2018 — Release of NICER GO Cycle 1 call for proposals (ROSES), 

observations contingent on mission “bridge” extension; currently, no 
funding or data rights for GOs

• March 2018 — First public data release to HEASARC
• Jun 2018 — Mission Success Progress Review
• Sept 2018 — Cycle 1 proposals due
• Jan 2019 — End of Baseline Science mission; beginning of Cycle 1 GO 

observations if mission bridge is approved.
• Spring 2019 — Consideration of NICER mission extension by 

Astrophysics Senior Review
• Summer 2019 — Senior Review results announced
• Oct 2019 — Bridge & GO Cycle 1 complete, possible 3-yr extension

Baseline Science and GO timeline
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Guest Observer Program
NICER tools at HEASARC available to anticipate 

observations of your favorite targets
• Timing-spectral studies of black-hole binaries 

& AGN
• Broadened iron lines
• Coronal emission from stars, other soft transients
• … and more!
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SEXTANT — Heritage
Pioneer Plaques and Voyager Records
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SEXTANT — Method
Inverting traditional pulsar-timing techniques
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Objectives:
o Demonstrate GPS-like navigation anywhere in the 

Solar System using X-ray observations of millisecond 
pulsars (MSPs)

o Provide first real-time, on-orbit demo of X-ray pulsar-
based navigation (XNAV)
➢ Key Performance Parameter: better than 10 km worst-

direction orbit determination in less than 1 week 

➢ Stretch Goal: better than 1 km in less than 2 weeks

o Determine practical limitations of XNAV

o Catalog and characterize addition “beacon” MSPs

o Assess the feasibility of pulsar-based time transfer and 
timescale

SEXTANT — Deep-space navigation
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Success!
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Observing the sky from ISS


